
North American CO₂ Fluxes from CarbonTracker Compared with a New Synthesis of Inverse Models

A.R. Jacobson¹, D.F. Baker^{3,4}, M. Butler⁵, J. Chen⁶, F. Chevallier⁷, P. Ciais⁷, C. Crevoisier⁸, K. Davis⁵, A.S. Denning⁹, S. Gourdji¹⁰, A. Hirsch¹, R. Lokupitiya⁹, A.M. Michalak¹⁰, K. Mueller¹⁰, P.K. Patra¹¹, P. Peylin⁷, P.J. Rayner⁷, C. Rödenbeck¹², A. Schuh⁹, and C. Sweeney¹

Inverse models of carbon dioxide exchange from terrestrial ecosystems tend to estimate much more interannual variability (IAV) in CO₂ flux than forward, or bottom-up, models. For instance, the bottom-up model used in CarbonTracker (CASA-GFED2 of van der Werf *et al.*, 2006), predicts a peak-to-peak IAV of 0.2 PgC/yr for North America over the period 2000-2005, whereas after optimizing to agree with atmospheric CO₂ observations, CarbonTracker finds about four times more IAV. The peak-to-peak variability of 0.8 PgC/yr in North American flux from CarbonTracker is in fact as large as its estimate of the long-term mean uptake over the same region (-0.8 PgC/yr). In part to investigate this difference, the North American Carbon Program is organizing a synthesis report to compare inverse and forward models' estimates of North American CO₂ exchange over the period 2000-2005. We will report here on early results from this effort, focusing on a collection of inversion flux estimates from diverse modeling groups around the world.

Figure 1. Temporal domains of inverse models participating in the NACP interim synthesis project (light gray bars represent provisional estimates).

¹Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80309; 303-497-4916, Fax: 303-497-6546, E-mail: andy.jacobson@noaa.gov

²NOAA Earth System Research Laboratory, Boulder, CO 80305

³National Center for Atmospheric Research, Boulder, CO 80307

⁴Representing TransCom Modelers

⁵Penn State University, University Park, PA 16802

⁶University of Toronto, Toronto, Canada

⁷Laboratoire des Sciences du Climat et de l'Environment, Gif-sur-Yvette, France

⁸Laboratoire de Météorologie Dynamique, Palaiseau, France

⁹Colorado State University, Fort Collins, CO 80523

¹⁰University of Michigan, Ann Arbor, MI 48109

¹¹Frontier Research Center for Global Change, Yokohama, Japan

¹²Max-Planck-Institut für Biogeochemie, Jena, Germany